Голографическое управление в биологических системах с целью стимуляции выработки стволовых клеток

Проект адарис это создание музыки генома музыка днк. Создание музыки вашего фото образа методом спинорной спектроскопии. Музыка картин мелодия фотообраза

Голографическое управление в биологических системах с целью стимуляции выработки стволовых клеток

Голографическое управление в биологических системах с целью стимуляции выработки стволовых клеток

Из реферата на соискание докторской диссертации кандидата технических наук Г.Г. Тертышного (ИПУ РАН).
Памяти основателя ИПУ РАН : И.В. Прангишвили посвящаем.

Г.Г. Тертышный и К.В. Тюц.

Названия проекта.
а) Краткое название проекта: «Голографическое управление в биологических системах с целью стимуляции выработки стволовых клеток, необходимых для восстановления-регенерации и омоложения организма человека».

1. Развернутое название проекта: «Лазерно-голографический метод считывания, формирования и трансляции управляющей донорно-биогенной информации для улучшения состояния * “больных и/или старых клеток” реципиента».

Голографическое управление в биологических системах с целью стимуляции выработки стволовых клеток
Лазерно-голографический метод считывания, формирования и трансляции управляющей донорно-биогенной информации для улучшения состояния * “больных и/или старых клеток

Это происходит за счет восприятия реципиентом этой информации, запоминания и долговременной эндогенной и экзогенной реконструкции голографических структурно-динамических образов клеток донора путем одновременной стимуляции выработки собственных стволовых клеток, с последующей их трансляцией в зону больных органов и тканей реципиента для их регенерации.

2. а) Обоснование (краткое) научно-экспериментального проекта.

В связи с успехами в развитии динамической поляризационной голографии и разработанными нами способом и устройством информационного поляризационно-голографического управления состоянием больных клеток реципиента без геометрического и масштабного их искажения. Это происходит посредством трансляции голографической управляющей информации от донора к реципиенту в дальнюю зону и за счет одновременной дополнительной стимуляции выработки стволовых клеток для использования их в процессе регенерации. Нами экспериментально проверена возможность восприятия реципиентом биогенной родственной информации, что и позволило управлять состоянием биосистем, вплоть до полной регенерации и омолаживания органов и тканей, при наличии возможности правильного выбора клеток «родственного — здорового»* донора, а также оптимальной управляющей экспозиции в благоприятном режиме функционирования лазерно-голографического устройства.

б) Обоснование развернутого научно-экспериментального проекта.

Предложен новый метод формирования и трансляции информации от донора к реципиенту и восприятия им биогенной информации для управления процессами жизнедеятельности в биосистемах. Приведена математическая модель поляризационно-динамических процессов управления биологическими объектами посредством поляризационно-лазерного голографирования. В проекте кратко излагаются теоретические основы трансляции поляризационно-динамической информации и обсуждается реализующий ее способ и устройство для реализации голографического управления в биологических системах. Приведены некоторые результаты использования голографического информационно-лазерного преобразования для считывания и трансляции динамической голографической памяти собственных здоровых клеток от донора к больным клеткам реципиента, а также одновременной информационно-голографической стимуляции выработки собственных стволовых клеток организмом для дальнейшего использования их в процессах регенерации органов и тканей человека. Суть методики информационно-голографической стимуляции стволовых клеток состоит в выделении из собственного организма незначительного количества собственных, здоровых стволовых клеток и размещении их в нашу поляризационно-голографическую установку в качестве дополнительного донора-стимулятора.

Термин «голография» происходит от двух греческих слов holos – весь, полный и …графия – изображение, и обозначает полное объемное изображение объекта. При фазовом (прозрачном) строении голографируемого объекта по всему пространству получается полное и детальное его изображение. Впервые метод голографирования предложен Д. Габором в 1948 году и существенно дополнен отечественными учеными. Традиционный метод основан на интерференции когерентного излучения любой природы. Например, на фотопластинку одновременно с «сигнальной» волной, рассеянной объектом, направляют в обход объекта «опорную» или эталонную волну от того же источника света. Возникающая при интерференции этих волн картина, содержащая полную информацию об объекте, фиксируется на фоточувствительной поверхности. Она называется голограммой. При облучении голограммы или ее участка опорной волной можно увидеть объемное изображение всего объекта. Голография широко используется в физике и различных областях техники (в частности, для распознавания образов и кодирования информации), в акустике (для обнаружения внутренних дефектов в ответственных металлических конструкциях атомных станций) и т.п. Голография имеет большие перспективы при создании объемного кино и телевидения [1]. Данная работа (как и некоторые другие [2-15, 24]) является продолжением исследований по реализации гипотезы о голографических свойствах биосистем и о возможности голографического управления состоянием клеток этих систем. Под голографическим управлением мы понимаем изменение внутреннего состояния и структуры клеток в результате управляющих световых, акустических или электромагнитных воздействий.

При управлении биологическими системами производится передача голографической информации от донора к реципиенту. В ходе проведения лазерно-голографических экспериментальных работ на растениях в 1997 году было обнаружено явление голографической трансляции информации от донора к реципиенту [9-15, 23]. Суть этого явления состоит в прохождении лазерного излучения через полупрозрачные биологические клетки донора, которые это излучение модулируют собственной поляризационно-фазовой голограммой. Для устойчивого и без искажений запоминания в лучевом потоке считываемой информации был разработан метод виброустойчивого поляризационного динамического преобразования и устройство (сенсор-преобразователь) для его реализации. В физическую основу такого преобразователя заложен принцип избыточного кодирования каждой амплитудно-фазовой рассеивающей точки объекта в виде поляризационных колец аналогичным кольцам Ньютона.

В экспериментах производилась виброустойчивая передача некогерентной голографической информации от донора к реципиенту. При достаточно длительном и целенаправленном околорезонансном экспонировании реципиента происходило явление голографического управления состоянием клеток реципиента посредством транслируемой информации, исходящей от донора и от донора-стимулятора стволовых клеток. .

В результате состояние клеток реципиента улучшалось, приближаясь к нормальному состоянию, характерному для клеток молодого и здорового донора.

Это объясняется следующими причинами. Во-первых, оказалось, что основной пул голографической информации находится не только в амплитудно-частотных и фазовых модуляциях, но и в поляризационно-динамических модуляциях углов Эйлера. Это можно объяснить тем, что после отражения и рассеяния лазерного луча от каждой точки донора возникают световые конуса проходящего рассеянного излучения, в котором исходящая от лазера ортогонально-круговая поляризация преобразуется в пространственно-коническое ее распределение. При взаимодействии рассеянного излучения световых конусов с поляризационной опорной волной, синтезируемой сенсором-преобразователем (специальным поляризационным квазиобъективом), возникают пространственно-распределенные поляризационные кольца, напоминающие кольца Ньютона. Если клетки живые, то они подвижны. Однако, синтезируемые поляризационные кольца, практически неподвижны друг относительно друга и относительно выбранного начала координат, выбираемого в пространстве, в котором находится объект-донор. Это происходит из-за относительной связанности информационных (опорных и сигнальных) точек донора между собой. Переменные углы Эйлера обусловлены пространственными угловыми микроскопическими колебаниями точек донора, соответствующими динамическому состоянию клеток живого биологического объекта. Эти переменные углы представляют собой углы между прямыми, касательными к поляризационным кольцам, и осями координат, в которых рассматриваются точки донора.

Нами разработан способ и устройство для решения проблемы динамического управления биосистемами с целью регенерации органов и тканей. Суть этого способа и устройства состоят в прохождении лазерного или электромагнитного излучения через цельный организм или его фрагмент, например, через полупрозрачные стволовые биологические клетки донора, которые это излучение модулируют собственной поляризационно-фазовой голограммой. Для устойчивого и без искажений запоминания в лучевом потоке считываемой информации был разработан метод виброустойчивого поляризационного динамического преобразования и устройство (сенсор-преобразователь) для его реализации. В физическую основу такого преобразователя заложен принцип избыточного кодирования каждой амплитудно-фазовой рассеивающей точки объекта, например, в виде поляризационных колец (типа колец Ньютона).

В экспериментах производилась виброустойчивая передача некогерентной голографической информации от донора к реципиенту. При достаточно длительном и целенаправленном околорезонансном экспонировании реципиента происходило явление голографического управления состоянием клеток реципиента посредством транслируемой информации, исходящей от донора. В результате состояние клеток реципиента улучшалось, приближаясь к нормальному состоянию, характерному для клеток донора.

Это объясняется следующими причинами. Во-первых, оказалось, что основной пул голографической управляющей информации находится в поляризационно-динамических модуляциях углов Эйлера. Это можно объяснить тем, что после отражения и рассеяния лазерного луча от каждой точки донора возникают световые конуса интенсивности проходящего рассеянного излучения, в котором исходящая от лазера ортогонально-круговая поляризация преобразуется в пространственно-коническое ее распределение. При взаимодействии рассеянного излучения световых конусов с поляризационной опорной волной, синтезируемой сенсором-преобразователем (специальным поляризационным квазиобъективом), возникают пространственно-распределенные управляющие поляризационные кольца напоминающие кольца Ньютона. Если клетки живые, то они подвижны. Однако, синтезируемые кольца, практически неподвижны друг относительно друга и относительно начала координат, выбираемого в пространстве, в котором находится объект-донор. Это происходит из-за относительной пространственной связанности точек донора между собой. Переменные углы Эйлера обусловлены микроскопическими амплитудными колебаниями точек донора, соответствующими динамическому состоянию клеток живого биологического объекта. Эти переменные углы представляют собой углы между прямыми, касательными к управляющим поляризационным кольцам, и осями координат, в которых рассматриваются точки донора.

Во-вторых, оказалось возможным передавать управляющую поляризационно-голографическую информацию от донора в дальнюю зону, где располагался реципиент. Под дальней зоной, как обычно, понимается расстояние, значительно превышающее длину волны лазерного зондирующего сигнала, играющего роль несущего сигнала. Для реализации процесса голографического управления и был разработан и изготовлен вышеупомянутый специальный поляризационный квазиобъектив.

В-третьих, была решена проблема динамической устойчивости управляющих поляризационных голограмм, что оказалось особенно важно для работы с живыми биологическими организмами. Это означает, что при любых микродвижениях внутренних или внешних структур донора или реципиента, а также лазерного луча (например, из-за сейсмической подвижности фундамента, на котором установлен лазер) относительно клеток донора, возникает одна и та же система поляризационных колец, направленных на клетки реципиента.

В-четвертых, при голографическом поляризационном кодировании и трансляции управляющей объемной информации удалось решить проблему сохранения генетической избыточности. Эта избыточность понимается здесь в том смысле, что она связана с прямым и обратным Фурье-преобразованием, которое состоит, во-первых, в формировании и регистрации поляризационных управляющих колец, исходящих от каждой точки донора и, во-вторых, в их обратном Фурье-преобразовании, которое симметрично транслирует эти точки на реципиент. Прямое Фурье-преобразование дает систему поляризационных колец для каждой точки клеток донора, а обратное – преобразует эти кольца в точки аналогичные точкам донора, но перенесенные в дальнюю зону на реципиент. В итоге избыточность обеспечивается тем, что при прохождении через квазиобъектив, каждая клеточная структура донора трансформируется в совокупность объемных поляризационных конусов стоячей световой волны интенсивности. В случае частичного стирания или вибрационного размытия вышеупомянутых управляющих колец, которые соответствуют некоторой точке донора, оставшаяся часть колец оказывается достаточной для правильного формирования соответствующей точки донора.

В этом состоят основные отличия и преимущества способа и устройства голографического управления состоянием клеток биологических систем. За счет вышеуказанных решений была получена поляризационно-динамическая голографическая трансляция управляющей информации без ее геометрического и масштабного искажения. Это и позволило решить, нерешенную до настоящего времени, проблему голографического поляризационного управления состоянием органов и тканей у испытуемых животных.

Способ и устройство нами многократно проверены экспериментально, как на растениях, бактериях, так и на смертельно больных животных, находящихся в коме. Крысы типа Вистар нами были излечены от наведенного сахарного диабета (алаксановая модель).

Литература.

1. Тертышный Г.Г., Гаряев П.П., Рослов В.Н. Способ анализа физических объектов и устройство для его осуществления Приоритет международной заявки. №99/01/Л от 06.01.1999.

2. Тертышный Г.Г., Гаряев П.П., Готовский Ю.В. Трансформация света в радиоволны. III международная конференция «Теоретические и клинические аспекты применения адаптивной резонансной и мультирезонансной терапии». ИМЕДИС. Москва. 1997, С. 303-313.

3. Тертышный Г.Г., Гаряев П.П., Лощилов В.И., Щеглов В.А., Готовский Ю.В. Явление перехода света в радиоволны применительно к биосистемам. Сб. научн. трудов «Актуальные проблемы создания биотехнических систем». Вып. 2. МГТУ им. Н.Э. Баумана. Академия Медико-Технических Наук РФ. Москва, 1997, С. 31-42..

4. Тертышный Г.Г. Методы и средства биофизического полевого управления в биологических системах. Сб. статей «Злая, лая …», Ладомир, М., 2005, С. 565-571.

5. Тертышный Г.Г., Гетманов В.Г., Жужжалов В.Е.. Диагностическая измерительная система. Патент №2228518 от 14.10.2002.

6. Чучалин А.Г., Тертышный Г.Г., Учитель М.Л., Маевский Е.И., О Хан До, Песков А.Б., Кондрашева М.Н., Гришина Е.В., Хейфец В.И., Зякун А.М. Новый метод лазерной спектроскопии как основа идентификации тонкой структуры веществ. ХII Российский национальный конгресс «Человек и лекарство» Российская академия государственной службы при Президенте РФ. М., 2005. С. 8.

7. Чучалин А.Г., Тертышный Г.Г., Учитель М.Л., Маевский Е.И., О Хан До. Устройство и способ мультиплексной лазерной спектроскопии. Патент №2005104490 от 21.02.05.

8. Tertishniy G.G., Gariaev P.P., Kampf U., Muchamedjarov F. Fractal structure in DNA code and human language-towards a semiotics of biogenic information (IASS/AIS) Dresden, October 3-6, 1999, Р.161.

9. Tertishniy G.G., Gariaev P.P The quantum nonlocality of genomes as a main factor of the morphogenesis of biosystems. Potsdam, Germany, Мay 6-9, 1999, P. 37-39.

10. Tertishniy G.G., Gariaev P.P., Birshtein B.I., Iarochenko A.M., Marcer P.J., Leonova K.A., Kaempf U. The DNA-Wave Biocomputation // Consciousness and physical reality, Vol. 2, No. 2, 2000, PР.26-33.

11. Прангишвили И.В., Тертышный Г.Г.,. Гаряев П.П., Мологин А.В., Леонова Е.А., Мулдашев Э.Р. Генетические структуры как источник и приемник голографической информации // Датчики и Системы, 2000, № 2, С. 2- 8.

12. Прангишвили И.В., Тертышный Г.Г., Гаряев П.П., Максименко В.В., Мологин А.В., Леонова Е.А, Мулдашев Э.Р. Спектроскопия радиоволновых излучений локализованных фотонов: выход на квантово-нелокальные биоинформационные процессы // Датчики и Системы, 2000, № 9, С. 2-13.

13. Прангишвили И.В., Ярошенко., А.М., Гаряев П.П., Шабельников А.В. Тертышный Г.Г., Мологин А.В,.Мошков А.В, Зубков А.В., Леонова Е.А. К проблеме единства ритмов Вселенной // Датчики и Системы, 2001, №12, С. 2-4.

14. Прангишвили И.В., Тертышный Г.Г., Гаряев П.П., Мологин А.В., Леонова Е.А., Мулдашев Э.Р. Трехмерная модель процессов эндогенного голографического управления развитием пространственной структуры биосистем // Датчики и Системы, 2001, №1, С. 3-8.

15. Tertyshnii G.G., Gariaev P.P., Aksenov V.A., Leonova E.A., Fomchenkov S.V., The formalism of endogenous polarization/holographic managing processes in organisms. Consciousness and a physical reality, 9, number 4, С. 44-50, 2004, In Russian.

16. Тертышный Г.Г., Ануашвили А.Н.,Н. Кабир. Теоретические основы построения охранных устройств на основании фонового принципа. Доклады Юбилейной научно-технической конференции посвященной 25-летию ЦНИИРЭС, часть 1-я, М.,1997, с.182-184.

16. Tertishny G.G., Gariaev P.P.,.Maximenko V.V, Leonova E.A.,. Iarochenko A.M. The spectroscopy of biophotons in non-local genetic regulation. Journal of Non-Locality and Remote Mental Interactions 2002, Vol. I Nr. 3. 23. Tertyshnii G.G., Gariaev P.P., Aksenov V.A., Leonova E.A., Fomchenkov S.V., The formalism of endogenous polarization/holographic managing processes in organisms. Consciousness and a physical reality, 9, number 4, С. 44-50, 2004, In Russian.

17. Tertishny G.G., Gariaev P.P.,.Maximenko V.V, Leonova E.A.,. Iarochenko A.M. The spectroscopy of biophotons in non-local genetic regulation. Journal of Non-Locality and Remote Mental Interactions 2002, Vol. I Nr. 3.

18. Тертышный Г.Г. Голографический метод управления состоянием клеток биологических объектов. М., Проблемы управления, 2007, (в печати).

19. В. Смирнов (Директор ИЭК Кардиокомплекса Минздрава РФ). Восстановительная терапия будущего. М. 2001.

Поделится в соц сетях

Комментарии: 1

  1. Тюц Константин Васильевич:

    От теневого соавтора темы: Памяти уникального специалиста в оптической голографии, отца фонового принципа ( обнаружения в любых средах движущихся объектов )Г.Г. Тертышного,посвящаю!
    ……Кабинет И.В. Прангишвили . Мой коллега ,земляк из Донбасса ,ктн Г.Г. Тертышный,ученик Ю.Н. Денисюка, на несуразицы случайного человека — ботаника по образованию ППГ, произносит знаменитые слова:- «Я знаю как это сделать»! Как прав был Ивери Варламович ,что с позором выгнал «менеджера»ППГ впоследствии. Вот и перед смертью ППГ пытался некоторые достижения выудить у авторов этого сайта,с зондажем — не запатентовали ? Мои пожелания использовать мазерное излучение (оно более активно и глубже проникает в ткани) пока не осуществимы. До сих пор на сайте ipu.ru (2549!ИПУ РАН) вариант упомянутой ,откорректированной работы. Помогая Георгий Георгиевичу безвозмездно,моя цель -изучение циркулярно поляризованного излучения,использование его для восстановления биологических структур и использования его в технологии аппаратов для перемещения в пространстве-«времени» с помощью электромагнитных полей (на you tube интервью с контактерами Н.Н. Баранчиковым и Киржаковым).

    С уважением Тюц К.В.

Добавить комментарий